Comparison of relevance learning vector quantization with other metric adaptive classification methods
نویسندگان
چکیده
The paper deals with the concept of relevance learning in learning vector quantization and classification. Recent machine learning approaches with the ability of metric adaptation but based on different concepts are considered in comparison to variants of relevance learning vector quantization. We compare these methods with respect to their theoretical motivation and we demonstrate the differences of their behavior for several real world data sets.
منابع مشابه
Adaptive Relevance Matrices in Learning Vector Quantization
We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, and ...
متن کاملMatrix Learning in Learning Vector Quantization
We propose a new matrix learning scheme to extend Generalized Relevance Learning Vector Quantization (GRLVQ), an efficient prototype-based classification algorithm. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, general metric adaptation...
متن کاملRelevance matrices in LVQ
We propose a new matrix learning scheme to extend Generalized Relevance Learning Vector Quantization (GRLVQ). By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account. In comparison to the weighted euclidean metric used for GRLVQ, this metric is more powerful to...
متن کاملMetric Adaptation for Optimal Feature Classification in Learning Vector Quantization Applied to Environment Detection
The paper deals with the concept of relevance learning in learning vector quantization. Recent approaches are considered: the generalized learning vector quantization as well as the soft learning vector quantization. It is shown that relevance learning can be included in both methods obtaining similar structured learning rules for prototype learning as well as relevance factor adaptation. We sh...
متن کاملRelevance Determination for Learning Vector Quantization using the Fisher Criterion Score
Two new feature relevance determination algorithms are proposed for learning vector quantization. The algorithms exploit the positioning of the prototype vectors in the input feature space to estimate Fisher criterion scores for the input dimensions during training. These scores are used to form online estimates of weighting factors for an adaptive metric that accounts for dimensional relevance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2006